Final projects for Analysis and Topology II

(draft, subject to further modifications)

Let p be a prime number. The field \mathbb{Q}_{p} of p-adic numbers can be viewed as a non-Archimedean counterpart of the field \mathbb{R}. The purpose of these projects is to have a first understanding about the field \mathbb{Q}_{p}, and the p-adic analysis compared with the analysis over \mathbb{R}.

Background

Let $x \neq 0$ be a rational number. Write $x=p^{n} \cdot \frac{a}{b}$, with $a, b, n \in \mathbb{Z}$ such that $b \neq 0$ and that $p \nmid a b$. Set

$$
|x|_{p}:=p^{-n} \in \mathbb{R},
$$

and call it the p-adic absolute value (or the p-adic valuation) of x. By convention, we set also $|0|_{p}=0$. The following proposition is crucial in the p-adic analysis (especially the strong triangle inequality), whose proof is left to the interested readers.

Proposition 0.1. The p-adic absolute value $|x|_{p}$ is well-defined. Moreover, we have

- for $x \in \mathbb{Q},|x|_{p} \geq 0$, with equality if and only if $x=0$;
- for $x, y \in \mathbb{Q},|x y|_{p}=|x|_{p}|y|_{p}$;
- (strong triangle inequality) for $x, y \in \mathbb{Q},|x+y|_{p} \leq \max \left\{|x|_{p},|y|_{p}\right\}$.

In this way we deduce a metric on \mathbb{Q}, called the p-adic metric, and the induced topology on \mathbb{Q} is called the p-adic topology. For the remaining part of this notes, unless mention explicitly the contrast, we will consider \mathbb{Q} as a metric space with respect to the p-adic metric above. One checks that \mathbb{Q} is not complete with respect to the p-adic metric. Let

$$
\mathbb{Q}_{p}
$$

be the completion of $\left(\mathbb{Q},| |_{p}\right)$. By continuity, the addition and the multiplication extend to \mathbb{Q}_{p}, and \mathbb{Q}_{p} becomes naturally a field. Moreover the p-adic absolute value on \mathbb{Q} extends to a map

$$
\left|\left.\right|_{p}: \mathbb{Q}_{p} \longrightarrow \mathbb{R}_{\geq 0},\right.
$$

which is again referred as to the p-adic absolute value on \mathbb{Q}_{p}. Let

$$
\mathbb{Z}_{p}:=\left\{\left.x \in \mathbb{Q}_{p}| | x\right|_{p} \leq 1\right\} .
$$

By the strong triangle inequality above, one checks that $\mathbb{Z}_{p} \subset \mathbb{Q}_{p}$ is a subring, called the ring of p-adic integers. Furthermore, we have natural inclusions

$$
\mathbb{Q} \subseteq \mathbb{Q}_{p}, \quad \text { and } \quad \mathbb{Z} \subseteq \mathbb{Z}_{p}
$$

1 Project I: the topology of \mathbb{Q}_{p}

Exercise 1.1. (1) Show that, for any $x \in \mathbb{Q}_{p}$ and for any real number $r>0$, the following sets $\mathbf{B}(x, r):=\left\{y \in \mathbb{Q}_{p}| | y-\left.x\right|_{p} \leq r\right\}, \quad \stackrel{\circ}{\mathbf{B}}(x, r):=\left\{y \in \mathbb{Q}_{p}| | y-\left.x\right|_{p}<r\right\}, \quad \partial \mathbf{B}(x, r):=\mathbf{B}(x, r) \backslash \dot{\mathbf{B}}(x, r)$ are all open and closed.
(2) For $n \in \mathbb{Z}$, show that $\mathbf{B}\left(0, p^{-n}\right)=p^{n} \mathbb{Z}_{p}$ and $\dot{\mathbf{B}}\left(0, p^{-n}\right)=p^{n+1} \mathbb{Z}_{p}$.
(3) Show that, as a topological space, \mathbb{Q}_{p} is totally disconnected: that is, the singletons $\{x\}$, for $x \in \mathbb{Q}_{p}$, and the empty set \emptyset are the only connected subsets of \mathbb{Q}_{p}.
(4) Show that \mathbb{Z}_{p} is a compact subset of \mathbb{Q}_{p}.

Exercise 1.2. (1) Show that, a series $\sum_{n=1}^{\infty} x_{n}$ of elements in \mathbb{Q}_{p} converges if and only if $\lim _{n \rightarrow \infty} x_{n}=0$.
(2) Show that every element $x \in \mathbb{Q}_{p}$ can be written in a unique way as

$$
\begin{equation*}
x=\sum_{i \in \mathbb{Z}} a_{i} p^{i}, \quad a_{i} \in I:=\{0, \ldots, p-1\} \tag{1}
\end{equation*}
$$

such that $a_{i}=0$ for $i \ll 0$. Furthermore, $x \in \mathbb{Z}_{p}$ if and only if $a_{i}=0$ for all $i<0$. Compute the p-adic expansion of -1 in \mathbb{Q}_{p}.
(3) Recall the inclusion $\mathbb{Q} \subseteq \mathbb{Q}_{p}$. Show that, for $x \in \mathbb{Q}_{p}, x \in \mathbb{Q}$ if and only if the coefficients a_{i} 's in its p-adic expansion (1) is periodic, i.e., $\exists m \in \mathbb{Z}$ and $0 \neq n \in \mathbb{N}$ such that $a_{i}=a_{i+n}$ for every $i \geq m$.
(4) Let $\prod_{\mathbb{N}} I$ be a product of countably many copies of I indexed by \mathbb{N}. Show that the map

$$
\mathbb{Z}_{p} \longrightarrow \prod_{\mathbb{N}} I, \quad \sum_{i=0}^{\infty} a_{i} p^{i} \mapsto\left(a_{0}, a_{1}, \ldots\right)
$$

is a homeomorphism. Here we equip I with the discrete topology, and $\prod_{\mathbb{N}} I$ with the product topology.
(5) Show that \mathbb{Q}_{p} is not homeomorphic to \mathbb{R}. For different prime numbers $p \neq q$, are \mathbb{Q}_{p} and \mathbb{Q}_{q} homeomorphic to each other? Please justify your assertion.

Exercise 1.3. In this exercise, we are looking for subsets of some Euclidean space \mathbb{R}^{n} which are homeomorphic to \mathbb{Q}_{p} (i.e., "models" of \mathbb{Q}_{p}). For simplicity, here we merely illustrate some examples in the case $p=2$ or 3 .
(1) Show that the following map

$$
\mathbb{Z}_{2} \longrightarrow \mathbb{R}, \quad x=\sum_{i=0}^{\infty} \frac{a_{i}}{2^{i}} \mapsto \frac{2}{3} \sum_{i=1}^{\infty} \frac{a_{i}}{3^{i}}
$$

is continuous, and defines a homeomorphism of \mathbb{Z}_{2} onto its image. Can you recognize its image?
(2) Consider $\mathbb{R}^{2}, e_{1}=(1,0)$ and $e_{2}=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$. Let

$$
\nu:\{0,1,2\} \longrightarrow \mathbb{R}^{2}
$$

be the map given by $\nu(0)=0, \nu(1)=e_{1}$ and $\nu(2)=e_{2}$. Let $b>1$ be a real number. Consider the map

$$
\psi: \mathbb{Z}_{3} \longrightarrow \mathbb{R}^{2}, \quad \sum_{i=0}^{\infty} a_{i} 3^{i} \mapsto(b-1) \sum_{i=0}^{\infty} \frac{\nu\left(a_{i}\right)}{b^{i+1}}
$$

Show that ψ is continuous. Moreover,
(a) If $b>2, \psi$ is injective, and gives a homeomorphism from \mathbb{Z}_{3} onto its image.
(b) Draw a picture of $\operatorname{im}(\psi) \subset \mathbb{R}^{2}$ when $b=3$.
(c) What happens if $b=2$?
(d) Extend the construction above to a model of \mathbb{Q}_{3} in \mathbb{R}^{2}.

2 Project 2: elementary calculus over \mathbb{Q}_{p}

Exercise 2.1. Let $\sum_{n=1}^{\infty} a_{n}$ be a series of elements in \mathbb{Q}_{p}.
(1) Show that, if $\sum_{n} a_{n}$ converges, it converges unconditionally, i.e., for any reordering of the terms $a_{n} \rightarrow a_{n}^{\prime}$, the series $\sum_{n} a_{n}^{\prime}$ also converges.
(2) Compare (1) to what happens in the real case.

Exercise 2.2. In this exercise, we will show that one cannot have a reasonable ordering " \leq " as in the real case. Nevertheless, an analogous notion of "sign" can be defined for \mathbb{Q}_{p}.
(1) Show that there does not exist any partial order \leq on \mathbb{Q}_{p} satisfying the properties below:

- $-1 \leq 0 \leq 1$;
- " \leq " is compatible with the addition and the multiplication of \mathbb{Q}_{p} in the evident way; and
- for a sequence $\left\{a_{n}\right\}$ of elements in \mathbb{Q}_{p} converging to $a \in \mathbb{Q}_{p}$, if $a_{n} \geq 0$ for every n, then $a \geq 0$.
(2) For $K=\mathbb{R}$ or \mathbb{Q}_{p}, let $K^{*}=K \backslash\{0\}$. For $x, y \in K^{*}$, we denote by $[x, y]$ the smallest dis 1 containing both x and y. Define $x \sim y$ if $0 \notin[x, y]$.
(a) Show that " \sim " is an equivalence relation on K^{*}.
(b) Assume $K=\mathbb{R}$. Describe all the equivalence classes of \mathbb{R}^{*} relative to \sim. Show that the map

$$
\operatorname{sgn}: \mathbb{R}^{*} / \sim \longrightarrow\{ \pm 1\} \subset \mathbb{R}, \quad[x] \mapsto \frac{x}{|x|}
$$

is well-defined and is bijective.
(c) What can you say when $K=\mathbb{Q}_{p}$?

Exercise 2.3. A function $f: \mathbb{Q}_{p} \rightarrow \mathbb{Q}_{p}$ is called locally constant, if for each $x \in \mathbb{Q}_{p}$, there exists some open subset $U \ni x$, such that f is constant on U.

[^0](1) Show that locally constant functions on \mathbb{Q}_{p} are continuous. Moreover, they are differentiable with derivation identically 0 . Also what are the continuous locally constant real-valued function defined over \mathbb{R} ?
(2) Show that, for every continuous function $f: \mathbb{Q}_{p} \rightarrow \mathbb{Q}_{p}$, and for any real number $\epsilon>0$, there exists some locally constant function $g: \mathbb{Q}_{p} \rightarrow \mathbb{Q}_{p}$ so that
$$
|f(x)-g(x)|<\epsilon, \quad \forall x \in \mathbb{Q}_{p}
$$

If moreover the image of f is contained in some compact subset of \mathbb{Q}_{p}, show that we can even choose locally constant function g so that it has only finitely many different values.
(3) Consider the following function

$$
f: \mathbb{Q}_{p} \longrightarrow \mathbb{Q}_{p}, \quad \sum_{n \geq N} a_{n} p^{n} \mapsto \sum_{n \geq N} a_{n} p^{2 n}
$$

Show that f is injective, continuous and differentiable, with derivation identically 0.

3 Project 3: continuous functions over \mathbb{Z}_{p}

Recall the inclusion $\mathbb{Q} \subset \mathbb{Q}_{p}$, which induces an inclusion $\mathbb{N} \subset \mathbb{Z}_{p}$. In the following, a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ a elements in \mathbb{Q}_{p} is often identified with the map below defined over \mathbb{N} :

$$
f: \mathbb{N} \longrightarrow \mathbb{Q}_{p}, \quad n \mapsto x_{n} .
$$

Exercise 3.1. Show that \mathbb{N} is dense in \mathbb{Z}_{p}. Deduce that, for a sequence $\left\{x_{n}\right\}$ of elements in \mathbb{Q}_{p}, there exists at most one continuous function $g: \mathbb{Z}_{p} \rightarrow \mathbb{Q}_{p}$ such that $g(n)=x_{n}$ for every $n \in \mathbb{N}$.

If we can find such a continuous function g as above, we then say that the sequence $\left\{x_{n}\right\}$ can be interpolated.

Exercise 3.2. Let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of elements in \mathbb{Q}_{p}, with $f: \mathbb{N} \rightarrow \mathbb{Q}_{p}$ the corresponding map. Show that the following assertions are equivalent.
(1) The sequence $\left\{x_{n}\right\}$ can be interpolated.
(2) The map f is uniformly continuous. Here \mathbb{N} is viewed as a subset of \mathbb{Q}_{p}.
(3) For any $\epsilon>0$, there exists an integer $N>0$, such that $n=m+p^{N}$ implies $\left|x_{n}-x_{m}\right|_{p}<\epsilon$.

Exercise 3.3. (1) Let $\left\{a_{n}\right\}$ be a nonconstant Cauchy sequence of p-adic numbers. Show that it cannot be interpolated.
(2) Show that, for $a \in \mathbb{Z}_{p}$, the sequence $1, a, a^{2}, \ldots$ can be interpolated if and only if $a \in 1+p \mathbb{Z}_{p} \cdot{ }^{2}$.

For $n \in \mathbb{N}$, let

$$
\binom{x}{n}:=\frac{x(x-1) \cdots(x-n+1)}{n!} .
$$

In particular, $\binom{x}{0}=1$ by convention.
Exercise 3.4. (1) Show that, viewed as a function on $x,\binom{x}{n}$ is uniformly continuous on \mathbb{Z}_{p}, and $\binom{x}{n} \in \mathbb{Z}_{p}$ for all $x \in \mathbb{Z}_{p}$.

[^1](2) Let $\left\{a_{n}\right\}$ be a sequence of elements in \mathbb{Q}_{p}, let
$$
F(x):=\sum_{n=0}^{\infty} a_{n}\binom{x}{n}
$$

Show that this series converges on \mathbb{Z}_{p} if and only if $\lim _{n \rightarrow \infty} a_{n}=0$.
For $\left\{x_{n}\right\}$ a sequence of elements in \mathbb{Q}_{p}, with $f: \mathbb{N} \rightarrow \mathbb{Q}_{p}$ the corresponding map, let

$$
x_{n}^{*}:=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} x_{n-k}
$$

The interpolation series of $\left\{x_{n}\right\}$, or equivalently of f, is given by the following formula

$$
f^{*}(x)=\sum_{n=0}^{\infty} x_{n}^{*}\binom{x}{n}
$$

Exercise 3.5. (1) Show that $f=f^{*}$ as a function defined over \mathbb{N}.
(2) If f admits a second representation

$$
f(x)=\sum_{n=0}^{\infty} a_{n}\binom{x}{n}, \quad x \in \mathbb{N}
$$

show that $a_{n}=x_{n}^{*}$.
Exercise 3.6 (Mahler's Theorem). Let $f: \mathbb{N} \rightarrow \mathbb{Q}_{p}$ be a uniformly continuous function. Then the interpolation series f^{*} converges uniformly to a uniformly continuous function over \mathbb{Z}_{p}. As a corollary, show that, every continuous function $F: \mathbb{Z}_{p} \rightarrow \mathbb{Q}_{p}$ can be uniformly approximated by polynomials ${ }^{3}$

[^2]
[^0]: ${ }^{1}$ That is, a subset of the form $\left\{a \in K\left|\left|a-a_{0}\right| \leq r_{0}\right\}\right.$ for some $a_{0} \in K$ and $r_{0} \geq 0$.

[^1]: ${ }^{2}$ This allows us to consider the continuous exponential function $a^{x}, x \in \mathbb{Z}_{p}$

[^2]: ${ }^{3}$ Compared with the real case, the way of the approximation depends naturally on the function F in the p-adic case.

