Final projects for Analysis and Topology II

(draft, subject to further modifications)

Let p be a prime number. The field \mathbb{Q}_p of p-adic numbers can be viewed as a non-Archimedean counterpart of the field \mathbb{R} . The purpose of these projects is to have a first understanding about the field \mathbb{Q}_p , and the p-adic analysis compared with the analysis over \mathbb{R} .

Background

Let $x \neq 0$ be a rational number. Write $x = p^n \cdot \frac{a}{b}$, with $a, b, n \in \mathbb{Z}$ such that $b \neq 0$ and that $p \nmid ab$. Set

$$|x|_p := p^{-n} \in \mathbb{R},$$

and call it the *p*-adic absolute value (or the *p*-adic valuation) of *x*. By convention, we set also $|0|_p = 0$. The following proposition is crucial in the *p*-adic analysis (especially the strong triangle inequality), whose proof is left to the interested readers.

Proposition 0.1. The p-adic absolute value $|x|_p$ is well-defined. Moreover, we have

- for $x \in \mathbb{Q}$, $|x|_p \ge 0$, with equality if and only if x = 0;
- for $x, y \in \mathbb{Q}$, $|xy|_p = |x|_p |y|_p$;
- (strong triangle inequality) for $x, y \in \mathbb{Q}$, $|x+y|_p \le \max\{|x|_p, |y|_p\}$.

In this way we deduce a metric on \mathbb{Q} , called the *p*-adic metric, and the induced topology on \mathbb{Q} is called the *p*-adic topology. For the remaining part of this notes, unless mention explicitly the contrast, we will consider \mathbb{Q} as a metric space with respect to the *p*-adic metric above. One checks that \mathbb{Q} is not complete with respect to the *p*-adic metric. Let

 \mathbb{Q}_p

be the completion of $(\mathbb{Q}, ||_p)$. By continuity, the addition and the multiplication extend to \mathbb{Q}_p , and \mathbb{Q}_p becomes naturally a field. Moreover the *p*-adic absolute value on \mathbb{Q} extends to a map

$$| |_p : \mathbb{Q}_p \longrightarrow \mathbb{R}_{\geq 0},$$

which is again referred as to the *p*-adic absolute value on \mathbb{Q}_p . Let

$$\mathbb{Z}_p := \{ x \in \mathbb{Q}_p \mid |x|_p \le 1 \}.$$

By the strong triangle inequality above, one checks that $\mathbb{Z}_p \subset \mathbb{Q}_p$ is a subring, called the **ring** of *p*-adic integers. Furthermore, we have natural inclusions

$$\mathbb{Q} \subseteq \mathbb{Q}_p$$
, and $\mathbb{Z} \subseteq \mathbb{Z}_p$.

1 Project I: the topology of \mathbb{Q}_p

Exercise 1.1. (1) Show that, for any $x \in \mathbb{Q}_p$ and for any real number r > 0, the following sets

$$\begin{split} \mathbf{B}(x,r) &:= \{ y \in \mathbb{Q}_p \mid |y-x|_p \leq r \}, \quad \mathring{\mathbf{B}}(x,r) := \{ y \in \mathbb{Q}_p \mid |y-x|_p < r \}, \quad \partial \mathbf{B}(x,r) := \mathbf{B}(x,r) \setminus \mathring{\mathbf{B}}(x,r) \\ & \text{ are all open and closed.} \end{split}$$

- (2) For $n \in \mathbb{Z}$, show that $\mathbf{B}(0, p^{-n}) = p^n \mathbb{Z}_p$ and $\overset{\circ}{\mathbf{B}}(0, p^{-n}) = p^{n+1} \mathbb{Z}_p$.
- (3) Show that, as a topological space, \mathbb{Q}_p is totally disconnected: that is, the singletons $\{x\}$, for $x \in \mathbb{Q}_p$, and the empty set \emptyset are the only connected subsets of \mathbb{Q}_p .
- (4) Show that \mathbb{Z}_p is a compact subset of \mathbb{Q}_p .
- **Exercise 1.2.** (1) Show that, a series $\sum_{n=1}^{\infty} x_n$ of elements in \mathbb{Q}_p converges if and only if $\lim_{n\to\infty} x_n = 0$.
- (2) Show that every element $x \in \mathbb{Q}_p$ can be written in a unique way as

$$x = \sum_{i \in \mathbb{Z}} a_i p^i, \quad a_i \in I := \{0, \dots, p-1\}$$
(1)

such that $a_i = 0$ for $i \ll 0$. Furthermore, $x \in \mathbb{Z}_p$ if and only if $a_i = 0$ for all i < 0. Compute the p-adic expansion of -1 in \mathbb{Q}_p .

- (3) Recall the inclusion $\mathbb{Q} \subseteq \mathbb{Q}_p$. Show that, for $x \in \mathbb{Q}_p$, $x \in \mathbb{Q}$ if and only if the coefficients a_i 's in its p-adic expansion (1) is periodic, i.e., $\exists m \in \mathbb{Z}$ and $0 \neq n \in \mathbb{N}$ such that $a_i = a_{i+n}$ for every $i \geq m$.
- (4) Let $\prod_{\mathbb{N}} I$ be a product of countably many copies of I indexed by \mathbb{N} . Show that the map

$$\mathbb{Z}_p \longrightarrow \prod_{\mathbb{N}} I, \quad \sum_{i=0}^{\infty} a_i p^i \mapsto (a_0, a_1, \ldots)$$

is a homeomorphism. Here we equip I with the discrete topology, and $\prod_{\mathbb{N}} I$ with the product topology.

(5) Show that \mathbb{Q}_p is not homeomorphic to \mathbb{R} . For different prime numbers $p \neq q$, are \mathbb{Q}_p and \mathbb{Q}_q homeomorphic to each other? Please justify your assertion.

Exercise 1.3. In this exercise, we are looking for subsets of some Euclidean space \mathbb{R}^n which are homeomorphic to \mathbb{Q}_p (i.e., "models" of \mathbb{Q}_p). For simplicity, here we merely illustrate some examples in the case p = 2 or 3.

(1) Show that the following map

$$\mathbb{Z}_2 \longrightarrow \mathbb{R}, \quad x = \sum_{i=0}^{\infty} \frac{a_i}{2^i} \mapsto \frac{2}{3} \sum_{i=1}^{\infty} \frac{a_i}{3^i}$$

is continuous, and defines a homeomorphism of \mathbb{Z}_2 onto its image. Can you recognize its image?

(2) Consider \mathbb{R}^2 , $e_1 = (1,0)$ and $e_2 = (\frac{1}{2}, \frac{\sqrt{3}}{2})$. Let

 $\nu:\{0,1,2\}\longrightarrow \mathbb{R}^2$

be the map given by $\nu(0) = 0$, $\nu(1) = e_1$ and $\nu(2) = e_2$. Let b > 1 be a real number. Consider the map

$$\psi : \mathbb{Z}_3 \longrightarrow \mathbb{R}^2, \quad \sum_{i=0}^{\infty} a_i 3^i \mapsto (b-1) \sum_{i=0}^{\infty} \frac{\nu(a_i)}{b^{i+1}}.$$

Show that ψ is continuous. Moreover,

- (a) If b > 2, ψ is injective, and gives a homeomorphism from \mathbb{Z}_3 onto its image.
- (b) Draw a picture of $im(\psi) \subset \mathbb{R}^2$ when b = 3.
- (c) What happens if b = 2?
- (d) Extend the construction above to a model of \mathbb{Q}_3 in \mathbb{R}^2 .

2 Project 2: elementary calculus over \mathbb{Q}_p

Exercise 2.1. Let $\sum_{n=1}^{\infty} a_n$ be a series of elements in \mathbb{Q}_p .

- (1) Show that, if $\sum_{n} a_n$ converges, it converges unconditionally, i.e., for any reordering of the terms $a_n \to a'_n$, the series $\sum_{n} a'_n$ also converges.
- (2) Compare (1) to what happens in the real case.

Exercise 2.2. In this exercise, we will show that one cannot have a reasonable ordering " \leq " as in the real case. Nevertheless, an analogous notion of "sign" can be defined for \mathbb{Q}_p .

- (1) Show that there does not exist any partial order \leq on \mathbb{Q}_p satisfying the properties below:
 - $-1 \le 0 \le 1;$
 - " \leq " is compatible with the addition and the multiplication of \mathbb{Q}_p in the evident way; and
 - for a sequence $\{a_n\}$ of elements in \mathbb{Q}_p converging to $a \in \mathbb{Q}_p$, if $a_n \ge 0$ for every n, then $a \ge 0$.
- (2) For $K = \mathbb{R}$ or \mathbb{Q}_p , let $K^* = K \setminus \{0\}$. For $x, y \in K^*$, we denote by [x, y] the smallest disk¹ containing both x and y. Define $x \sim y$ if $0 \notin [x, y]$.
 - (a) Show that " \sim " is an equivalence relation on K^* .
 - (b) Assume $K = \mathbb{R}$. Describe all the equivalence classes of \mathbb{R}^* relative to \sim . Show that the map

$$\operatorname{sgn}: \mathbb{R}^* / \sim \longrightarrow \{\pm 1\} \subset \mathbb{R}, \quad [x] \mapsto \frac{x}{|x|}$$

is well-defined and is bijective.

(c) What can you say when $K = \mathbb{Q}_p$?

Exercise 2.3. A function $f : \mathbb{Q}_p \to \mathbb{Q}_p$ is called locally constant, if for each $x \in \mathbb{Q}_p$, there exists some open subset $U \ni x$, such that f is constant on U.

¹That is, a subset of the form $\{a \in K \mid |a - a_0| \le r_0\}$ for some $a_0 \in K$ and $r_0 \ge 0$.

- (1) Show that locally constant functions on \mathbb{Q}_p are continuous. Moreover, they are differentiable with derivation identically 0. Also what are the continuous locally constant real-valued function defined over \mathbb{R} ?
- (2) Show that, for every continuous function $f : \mathbb{Q}_p \to \mathbb{Q}_p$, and for any real number $\epsilon > 0$, there exists some locally constant function $g : \mathbb{Q}_p \to \mathbb{Q}_p$ so that

$$|f(x) - g(x)| < \epsilon, \quad \forall x \in \mathbb{Q}_p$$

If moreover the image of f is contained in some compact subset of \mathbb{Q}_p , show that we can even choose locally constant function g so that it has only finitely many different values.

(3) Consider the following function

$$f: \mathbb{Q}_p \longrightarrow \mathbb{Q}_p, \quad \sum_{n \ge N} a_n p^n \mapsto \sum_{n \ge N} a_n p^{2n}.$$

Show that f is injective, continuous and differentiable, with derivation identically 0.

3 Project 3: continuous functions over \mathbb{Z}_p

Recall the inclusion $\mathbb{Q} \subset \mathbb{Q}_p$, which induces an inclusion $\mathbb{N} \subset \mathbb{Z}_p$. In the following, a sequence $\{x_n\}_{n \in \mathbb{N}}$ a elements in \mathbb{Q}_p is often identified with the map below defined over \mathbb{N} :

$$f: \mathbb{N} \longrightarrow \mathbb{Q}_p, \quad n \mapsto x_n.$$

Exercise 3.1. Show that \mathbb{N} is dense in \mathbb{Z}_p . Deduce that, for a sequence $\{x_n\}$ of elements in \mathbb{Q}_p , there exists at most one continuous function $g: \mathbb{Z}_p \to \mathbb{Q}_p$ such that $g(n) = x_n$ for every $n \in \mathbb{N}$.

If we can find such a continuous function g as above, we then say that the sequence $\{x_n\}$ can be **interpolated**.

Exercise 3.2. Let $\{x_n\}_{n\in\mathbb{N}}$ be a sequence of elements in \mathbb{Q}_p , with $f:\mathbb{N}\to\mathbb{Q}_p$ the corresponding map. Show that the following assertions are equivalent.

- (1) The sequence $\{x_n\}$ can be interpolated.
- (2) The map f is uniformly continuous. Here \mathbb{N} is viewed as a subset of \mathbb{Q}_p .
- (3) For any $\epsilon > 0$, there exists an integer N > 0, such that $n = m + p^N$ implies $|x_n x_m|_p < \epsilon$.
- **Exercise 3.3.** (1) Let $\{a_n\}$ be a nonconstant Cauchy sequence of p-adic numbers. Show that it cannot be interpolated.
- (2) Show that, for $a \in \mathbb{Z}_p$, the sequence $1, a, a^2, \ldots$ can be interpolated if and only if $a \in 1 + p\mathbb{Z}_p$.².

For $n \in \mathbb{N}$, let

$$\binom{x}{n} := \frac{x(x-1)\cdots(x-n+1)}{n!}$$

In particular, $\binom{x}{0} = 1$ by convention.

Exercise 3.4. (1) Show that, viewed as a function on x, $\binom{x}{n}$ is uniformly continuous on \mathbb{Z}_p , and $\binom{x}{n} \in \mathbb{Z}_p$ for all $x \in \mathbb{Z}_p$.

²This allows us to consider the continuous exponential function $a^x, x \in \mathbb{Z}_p$

(2) Let $\{a_n\}$ be a sequence of elements in \mathbb{Q}_p , let

$$F(x) := \sum_{n=0}^{\infty} a_n \binom{x}{n}.$$

Show that this series converges on \mathbb{Z}_p if and only if $\lim_{n\to\infty} a_n = 0$.

For $\{x_n\}$ a sequence of elements in \mathbb{Q}_p , with $f: \mathbb{N} \to \mathbb{Q}_p$ the corresponding map, let

$$x_n^* := \sum_{k=0}^n (-1)^k \binom{n}{k} x_{n-k}.$$

The interpolation series of $\{x_n\}$, or equivalently of f, is given by the following formula

$$f^*(x) = \sum_{n=0}^{\infty} x_n^* \binom{x}{n}.$$

Exercise 3.5. (1) Show that $f = f^*$ as a function defined over \mathbb{N} .

(2) If f admits a second representation

$$f(x) = \sum_{n=0}^{\infty} a_n \binom{x}{n}, \quad x \in \mathbb{N},$$

show that $a_n = x_n^*$.

Exercise 3.6 (Mahler's Theorem). Let $f : \mathbb{N} \to \mathbb{Q}_p$ be a uniformly continuous function. Then the interpolation series f^* converges uniformly to a uniformly continuous function over \mathbb{Z}_p . As a corollary, show that, every continuous function $F : \mathbb{Z}_p \to \mathbb{Q}_p$ can be uniformly approximated by polynomials.³

³Compared with the real case, the way of the approximation depends naturally on the function F in the p-adic case.